Ground state solutions for the non-linear fractional Schrödinger–Poisson system
نویسندگان
چکیده
منابع مشابه
Ground State Solutions for an Asymptotically Linear Diffusion System
This article concerns the diffusion system ∂tu−∆xu + V (x)u = g(t, x, v), −∂tv −∆xv + V (x)v = f(t, x, u), where z = (u, v) : R × RN → R2, V (x) ∈ C(RN , R) is a general periodic function, g, f are periodic in t, x and asymptotically linear in u, v at infinity. We find a minimizing Cerami sequence of the energy functional outside the Nehari-Pankov manifold N and therefore obtain ground state so...
متن کاملSolutions for some non-linear fractional differential equations with boundary value problems
In recent years, X.J.Xu [1] has been proved some results on mixed monotone operators. Following the paper of X.J.Xu, we study the existence and uniqueness of the positive solutions for non-linear differential equations with boundary value problems.
متن کاملExact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملon the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولAnalytical solutions for the fractional Fisher's equation
In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicable Analysis
سال: 2018
ISSN: 0003-6811,1563-504X
DOI: 10.1080/00036811.2018.1441998